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Abstract

Application of wavelet networks for identification of a direct internal reforming solid oxide fuel cell (DIR-SOFC) stack is reported in this paper.
The SOFC is a complex system particularly when it is directly fueled with hydrocarbons (natural gas, coal gas, etc.). Most of the traditional models
of the SOFC, based on the reforming, electrochemical and thermal modeling, are too complicated. To facilitate controller design and analysis of
systems, the wavelet network dynamic model of the DIR-SOFC is constructed, avoiding the consideration of the complex processes in the fuel cells.
The input and output data are used for initializing and training the wavelet network by a recursive approach. The Gram—Schmidt algorithm, the
Cross-Validation method and immune selection principles are applied to optimization of the network. The simulation is performed and comparisons
of characteristics under different operating conditions are given. The results show high static and dynamic accuracy of the identified model. Further,
the obtained wavelet network model can be used for developing the model-based controllers of DIR-SOFC.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The solid oxide fuel cell (SOFC) is based on a solid-state
ion-conducting electrolyte, which functions at high tempera-
ture. Due to high efficiency, high reliability, and low levels of
noise and pollution, the SOFC has been considered as one of
the most promising technologies for electrical energy genera-
tion [1]. The high operating temperature (up to 1000 °C) allows
internal reforming and promotes rapid kinetics with nonprecious
materials. Therefore, the SOFC can be directly fueled with pure
hydrogen, natural gas and other hydrocarbons [1,2].

Due to a lot of coupling parameters, the SOFC is con-
sidered a complicated nonlinear multi-input and multi-output
(MIMO) system which is difficult to model. In the past cou-
ple of years, several models [3—10] have been developed and
tested to study characteristics of the SOFC stack. Achenbach
presented a mathematical model of a planar SOFC and showed
the distributions of the current density and temperature obtained
by computational method [3]. Further, the dynamic voltage
response to an electrical current change was also discussed.
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Costamagna and Honegger [4] presented and validated a simu-
lation model for a SOFC stack integrated with an air pre-heater.
Recknagle et al. [8] developed three-dimensional thermo-fluid
electrochemical models of planar SOFC stacks. With the aid
of a simulation tool combining a computational fluid dynam-
ics (CFD) code and an electrochemistry calculation method, the
distributions of the temperature, current density and fuel species
were shown and investigated. In Refs. [9,10], a one-dimensional
model has been used for simulation of an anode-supported
intermediate temperature DIR-SOFC stack. Further, using this
model, the one-dimensional steady-state parameter distribution
and dynamic responses to several current density step-changes
were generated and discussed. Most of the models are based on
the fundamentals of heat, momentum and mass transfer, and are
focused on explaining the operation mechanism of the SOFC.
Although the models describe the physical and chemical pro-
cesses well, most of them are too complicated to be applied to
controller design.

To simplify the fuel cell models for the performance analysis
and valid control strategy design, statistical identification meth-
ods based on measurements have gained attention during the
recent years [11-13]. Arriagada et al. [11] developed an artificial
neural network (ANN) model of SOFC that is applicable to the
prediction of the static current density—voltage characteristics
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a

Nomenclature

dilation parameter of wavelet

A1,A, anodic and cathodic reaction surfaces
b translation parameter of wavelet

B stoichiometric matrix

Cp specific heat capacity (Jkg~! K~1)

E Nernst voltage (V)

Ey EMF (electro-motive-force) at standard pressure
Eact activation energy (J mol~1)

F gas flow rate (kgs™!)

1?7 gas flow rate vector

Frar Faraday constant (96,485 C mol~1)

h gas enthalpy (Jkg™!)

AH enthalpy change (J mol~!)

I current density (A m~2)

Iy exchange current density (A m_z)

I limiting current density (A m~2)

I mean current density (A m~2)

ky rate coefficient for reforming reaction
K, equilibrium constant

K adsorption constant

Ny number of multi-dimensional wavelets
P partial pressure (bar)

q heat generation Jm~2s~1)

r reaction rate (molm~2s~1)

r reaction rate vector

R gas constant (8.314] K~ mol~1)

Sh heat source (Jm—3 s~ 1)

T temperature (K)

T; inlet temperature (K)

Tout outlet temperature (K)

1% gas velocity vector

Veell cell voltage (V)

Vout stack output voltage (V)

w coefficient of wavelet

w molar mass vector

Greek symbols

a®, «® charge transfer coefficients

YA, ¥ coefficients for 73" and I§* (Am~2)

1) thickness or depth (m)

e thermal conductivity (W m~ 1K)

I number of moles of electrons participating in the
reaction

o density (kgm™3)

v wavelet function

v multi-dimensional wavelet function

2 ohmic resistance (2 m2)

Superscripts

an anode

C cell unit

ca cathode

e electrochemical reaction

Is lower separator

re reforming reaction
sh water—gas shift reaction
us upper separator

under different operating conditions. In Ref. [12], a RBF neural
network (NN) identification technology was employed to estab-
lish a dynamic model of a molten carbonate fuel cell (MCFC)
stack that was used for designing a temperature controller. In
Ref. [13], the Hammerstein nonlinear system, composed of a lin-
ear subsystem and a nonlinear subsystem, was applied to model
the SOFC for dynamic response studies. The NN and Ham-
merstein model are both black-box modeling methods which
are based on input and output data, and need not the priori
knowledge about the internal structure of the object.

Among the black-box methods, the wavelet network is a
novel and attractive modeling tool. The wavelet theory has been
applied to many scientific areas such as signal processing and
system identification [14,15]. The wavelet decomposition and
multi-resolution approximation (MRA) guarantee that any func-
tion of L?(R) can be approximated to any prescribed accuracy
with a finite sum of wavelets [ 14,15]. Wavelet networks combine
the advantages of wavelets and neural networks, and provide
an efficient constructive method for the implementation of net-
works [16]. Therefore, wavelet networks can be considered as
an alternative to neural and radial basis function networks. Many
researches [15—19] on the successful application of wavelet net-
works indicate that the approach is interesting and powerful.
Combined with advanced control methods, wavelet networks
can be used for controlling complicated coupling systems. Wai
[19] successfully developed a robust controller with a wavelet
network uncertainty observer to control the slider position of
a motor-mechanism coupling system. Lin et al. [20] presented
an adaptive wavelet network control system to control a syn-
chronous motor servo drive system, and experimental results
show an enhanced robust control performance.

In this paper, the aim is to identify a nonlinear black-box
MIMO model for a DIR-SOFC stack using wavelet networks.
The constructive process of the wavelet network mainly consists
of three parts including generation of wavelet libraries, evolution
of coefficients and selection of multi-dimensional wavelets used
in the reconstruction of nonlinear functions. One of the advan-
tages of the wavelet network is that it can be initialized according
to the input and output data [16,17]. To implement the con-
struction and optimization of the wavelet network, the recursive
approach, the Gram—Schmidt algorithm, the Cross-Validation
method and immune selection principles are employed.

The present study is organized into five sections. In Section
2, the physical model of the DIR-SOFC is described. In Section
3, the procedure for the wavelet network modeling is explained.
In Section 4, nonlinear dynamic modeling of the DIR-SOFC
stack using wavelet networks is detailedly described. Further, the
modeling results and comparison of static and dynamic charac-
teristics under different operating conditions are presented and
discussed. Section 5 concludes the paper.
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Fig. 1. Schematic diagram of a DIR-SOFC.

2. Physical model of DIR-SOFC
2.1. Reforming model

The layout of a DIR-SOFC is illustrated in Fig. 1. At the
anode of the DIR-SOFC, the methane is reformed to hydrogen
for oxidation in the electrochemical reaction [1,2]. The principal
reactions in the methane steam-reforming are

CH4 +2H,0 < CO, +4H, N
CH, + HyO < CO + 3H, 2)
CO + HyO < CO, +Hs 3)

The reversible reactions obey the laws of chemical equilib-
rium. We denote by rq, r and r3 the rates of reactions (1), (2)
and (3), respectively. They are computed by

_ (ki/P))(Pewny Piyo — (Pii, Pco, /K1)

ri DEN? , “4)
(kz/ P§))(Pen, Pryo — (Pfl, Pco/K2))
rp = , (5
DEN?
(k3/ Pu,)(Pco Puyo — (Pu, Pco,/K3))
r3 = . (6)
DEN?
DEN is defined as
pEN = LT KeoPco + Kif, Py + Ky, Pers + Kifo Prio
Py,
(7

In Egs. (4)-(7), P is the partial pressure; k,, with n=1-3,
are the rate coefficients; K, with n=1-3, are the equilibrium
constants for the reforming reactions; K¢ the adsorption con-
stants. k,, K, and K are the functions of temperature which
are presented in Ref. [21] detailedly. Reforming reaction rates
are determined by the temperature, gas partial pressures, equi-
librium constants, catalyst, etc. All these factors will be changed
with the flows and reactions in the stack.

2.2. Electrochemical model

At the anode, the main electrochemical reaction is the oxi-
dation of hydrogen [2]. At the cathode, molecular oxygen is
reduced to negatively charged ions.

H + 0% — H,0 + 2>~ ®)

(1/2)05 +2e~ — 0>~ )
The relation between the cell output voltage and the current
density [4,9] is expressed as
RT® n RT®
a0 Fpgp I3 0 Fg, IS0

LR (1 I) (10)
n - 5 )
w Frar Iy

VceH:E_I(Q+

where [ is the current density, §2 the ohmic resistance that
depends on the material thickness and on the operating tempera-
ture, R the gas constant (8.314 J K~! mol™!), T° the temperature
of the cell unit, Fg,, the Faraday constant (96,485 C mol 1), ™"
and o are the charge transfer coefficients for the anode and
cathode, respectively, w is the number of moles of electrons par-
ticipating in the reaction, and [, is the limiting current density.
The Nernst voltage of the cell, E, is calculated by

1/2
RT® pan pca

E=Eo+ In [ 420 ). (11)
2 Fpar PHZO

where E is the EMF (electro-motive-force) at standard pressure
[1].

Exchange current densities at the anode and cathode are
respectively given by

Jan — yan (Pﬁ2> <Pl§lr;0> exp (_ Eggt) (12)
0 Pres Pres RT¢ )’
P(c)a 0.25 Eca
Iy = yca<P Zf) exp <— R;i) , (13)
re

where y*" and y“* are coefficients, Ear, and ES2, are the activa-
tion energies, and Pr.r is the reference pressure (1 bar) [4].

The electrochemical reaction rates are directly related to the
current density. The rates of reactions (8) and (9) (r4 and rs) are

calculated by

_ 1
2FFar.

r4a =rs (14)

2.3. Thermal model

Reforming reactions are highly endothermic reactions. The
electrochemical reaction is exothermic and supplies heat and
steam to the endothermic reforming reactions. Non-uniform
reaction rate distribution in the stack makes the differences of
released heat across the stack, and the heat is transferred between
each component of the fuel cells (including convection, radiation
and conduction).

For the fuel and air flows, the energy equation is given as

dph)y [ - (Vh
— +4d hV — — | = 8, 15
S T div (p c h (15)

where p is the density, & the gas enthalpy, V the gas velocity
vector, ¢ the thermal conductivity, div denotes the divergence,
V denotes the gradient, C, the specific heat capacity and Sy, is
the heat source.
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For the cell unit and the separators, the energy equation can
be simplified as

T
PCpy, = dVEVT) = 5. (16)

The local heat released by electrochemical reactions is
expressed by

q° = —AHr4 — Veanl, (17)

where Vel is the local output electrical power produced by the
SOFC.

The heat changes caused by reforming reactions and the
water—gas shift reaction are respectively given by

q" = —AHri — AHyr;, (18)

¢ = —AHzrs. (19)

Besides the heat generation, the convective and radiant heat
transfers between the cell unit, separators and flows are taken
into account. For each object, Sy in Egs. (15) and (16) will be
given differently.

cell unit:
qC +qre
si=1= (20)
separators:
S =8 =0 1)
fuel flow:
h

fuel __ qs
St = o 22)
air flow:
S =0 (23)

In Egs. (20) and (22), 8¢ and ™! are the cell unit thickness
and the fuel channel depth, respectively.

2.4. Mass conservation

The continuous reforming and electrochemical reactions
change the chemical species concentrations in the flows, when
the fuel and air pass over the electrodes of the SOFC. Since
all gases are assumed to be ideal gases, the gas flow rates are
expressed by

B [FgueI] N [WlffAlBl?dAl

Fg W2ffA2 ByrsdAs

Ffuel
(24)

Fair

where Fy is the inlet gas flow rate, A1 and A, are anodic and
cathodic reaction surfaces, respectively. W] and Wz are the molar
mass vectors of the fuel and air, respectively. Stoichiometric

matrices By and B, and reaction rate vector 7 are respectively
given by

-1 -1 0 0
1 0 1 0
Bi=|0 1 -1 o], (25)
4 3 1 —1
2 -1 -1 1
B 172 (26)
2_ O )
F=(r1,r2,r3,72)". 27

3. Wavelet network modeling
3.1. Wavelet decomposition

A function y¥(x) € L*(R) is admissible as a wavelet, if its
Fourier transform (w) satisfies

1Y (w)[?

0 14
Cy = / dow < co. (28)
0 w

For any function f(x) € L*(R), its continuous wavelet trans-
form is defined as

w(a, b) = /R FOO)Yap(x)dx, (29)

where a € Ry and b € R are dilation and translation parame-
ters, respectively [14,15]. ¥, 5(x) is obtained by scaling mother
wavelet ¥(x) by a and translating it by b:

Yap(x) = a2y <xa_b> . (30)

The function f(x) can be reconstructed by the inverse wavelet
transform

o0 0 d
fo =cj! /O [ wta b ab. 31)

As a matter of fact, the continuous wavelet transform and its
inverse transform need to be implemented on digital computers.
The reconstruction equation is thus discretized into

fx) = szwx) (32)
where
Yi(x) = d () x — nby), 33)

and / represents the integer pair (m, n).

For multivariable nonlinear coupling systems, we construct
multi-dimensional wavelets ¥ by using the product of Ninpyt (the
number of input variables) scalar wavelets.

ﬁw(x‘_ ") (34)

Y(x) =
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Fig. 2. Diagram of the multi-dimensional wavelet reconstruction.

where

ai =ag™, (35)
by = njay ™ bo, (36)
X = (X0, oo Xy e X)) (37)

The reconstruction of the multivariable function can be writ-
ten as

Nw
fG) = w (). (38)
l

The multi-dimensional wavelet decomposition of f(x) canbe
regarded as a one-hidden-layer network (shown in Fig. 2) with
¥ as the activation function of the hidden neurons and with the
coefficient w; as the weight of the hidden layer.

3.2. Initialization of wavelet networks

Using MRA of the wavelet transform, it can be shown that
the bigger Ny, (the number of multi-dimensional wavelets used
in reconstruction) and wider ranges of dilation and translation
parameters would result in a better approximation of the function
[14,15]. In practice, however, the multi-dimensional available
data are finite and sparse. Many dilated and translated wavelets
do not contain any data point in their supports and actually have
no contribution to the function reconstruction [ 16]. They will not
improve the approximation accuracy, but increase the computa-
tional time and the storage requirements. Therefore, generating
wavelet libraries and eliminating the redundant wavelets are
beneficial and necessary.

3.2.1. Generating wavelet libraries

Discrete dyadic wavelets (ag=2, bp=1) are the typical
biorthogonal wavelet bases. We generate the libraries accord-
ing to the distribution of the available training data, and select
the scalar wavelets from the libraries to construct the multi-
dimensional wavelets. We denote by [min;, max;] the domain

containing the values of the ith component of the input vectors.
In order to guarantee that the wavelets extend initially over the
whole domain of the ith component of the input vectors, relations
(39) and (40) should be satisfied [17].

27" < @(max; — min;), (39
and
min; < 27™n; < max;, (40)

where 6 is a parameter adjusted according to the mother wavelet.
Hence, we can obtain

m; > —log,(f(max; — min;)), 41)
and
2™ min; < n; < 2™ max;. 42)

Under above two conditions (relations (41) and (42)), we
generate two integer sets

Sm; = {[—log,(6(max;—min;))], [—log,(f(max;—min;))]+1,
[—log,(f(max;—min;))]+2, [—log, (f(max;—min;))]
+3}, (43)

and

Sy = {12™min;], [2™min;] + 1, ..., [2™max;]}, (44)

where [ ] represents rounding toward ceiling, and | | represents
rounding toward floor.

Sm; and Sy, are the dilation and translation sets, respectively.
As can be seen from Eq. (44), the translations depend on the
values of dilations; the number of translations increases expo-
nentially with m;. We denote by {S,;, Sy;} the wavelet library
for the ith component of the input vectors. The wavelet library
for all Njppy input components is U?ﬁ"f“‘{Smi, Sn; }-

3.2.2. Selection of wavelets

From all the possible combinations of scalar wavelets, we
select a number of combinations, which contain most useful
information, to construct the wavelet network. In Section 3.2.1,
the wavelet libraries are generated based on the input data, not
on the output data. To eliminate the redundant wavelets in the
libraries for the estimation of f, we employ the Gram—Schmidt
algorithm relying on the input and output data.

The Gram-Schmidt algorithm is a recursive process which
aims to obtain an orthogonal basis from a non-orthogonal
set [22]. It first selects a multi-dimensional wavelet from the
libraries that best fits the training data as the initial basis, and then
repeatedly selects the multi-dimensional wavelets in the remain-
der to enlarge the basis so that the basis can best fit the data. The
reader is referred to [22] for the details of the Gram—Schmidt
algorithm.

Assume that we obtain N,, multi-dimensional wavelets by
Gram—Schmidt algorithm as follows

W, ..., ¥, ... Wy, ) (45)
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The hidden layer of the network is made up of the selected
wavelets. The determination of N, will be given in Section 3.3.2.

3.3. Training algorithm

3.3.1. Coefficients of wavelets

The MIMO system can be considered as the synthesis of sev-
eral MISO subsystems. Thus, we can separately train each MISO
subsystem. Considering a training data set {(x(k), y(k))|k =
1, ..., N;} generated by a system with Nippye inputs and a scalar
output, we use the recursive method to update the coefficients.

Iterative updating formulas for wy, (k), which is the coefficient
of ¥ (x(k)) at iteration k, are given as follows:

Nw
e(k) = y(k) = Y wilk — D¥(x(k)), (46)
=1
di, (k) = Ady,(k — 1) + W7 (x(k)), (47)
W, (x(k))e(k)

wiy (k) = wi (k — 1) + (48)

d (k)

In Eq. (47), 0<A <1 is the forgetting factor that indicates
the different importance of data. The data near iteration k are
more important than those far away [23]. The derivation of Egs.
(46)—(48) is presented in Appendix A. Updating recursions for
coefficients of other wavelets are similar to Egs. (46)—(48).

3.3.2. Number of multi-dimensional wavelets

In Section 3.2.2, we assume the number of multi-dimensional
wavelets in the network is Ny, and select the wavelets by
Gram-Schmidt algorithm. However, choosing the number Ny,
is a difficult process. The wavelet network model is expected
to have relatively high accuracy when evaluated not only with
training data but also with fresh data. If N, is over large, the
wavelet network will be too complex and tend to overfit the
training data. On the other hand, a wavelet network that is not
sufficiently complex (over small Ny,) can fail to detect fully the
signal in a complicated data set, leading to underfitting [16,24].

For this reason, the Cross-Validation method is employed to
estimate Ny,. The available data are divided into two parts when
training the model. One part is used for estimating the model
parameters. The quality of performances of the model on the
other part of the data reflects how well it would perform in an
unsupervised setting. The Cross-Validation criterion is given by

N

1 a o
CV = > (G = 00", (49)
T k=1

where fy, is the trained wavelet network with Ny, multi-
dimensional wavelets. The data set {(x(k), y(k))|k =1, ..., N}
used in Eq. (49) is different from the training data set. Hence,
Ny, is determined by minimizing CV.

The modeling procedures of wavelet networks can be sum-
marized as a flowchart in Fig. 3.

In the flowchart, Ny, should be repeatedly selected until
CV <gcy. Several selection approaches exit. The immune algo-

Generate wavelet
libraries according
to the input data

r

Select multi-dimensional wavelets
constructed by scalar wavelets using
Gram-Schmidt algorithm, and
initialize the network

Y

Train the wavelet Re-select N
network using recursive using immune
method algorithm

A
Evaluate the trained
wavelet network with
testing data

No

Fig. 3. Flowchart of the wavelet network modeling approach.

rithm is a heuristically random searching algorithm which is
developed as an imitation of the adaptive humoral immune
response [25]. It has been proved to be capable of performing
such tough tasks as machine learning and quadratic optimiza-
tion. In this paper, we use immune algorithm for selecting Ny, so
that the Cross-Validation criterion is gradually decreased after
selections.

4. Results

Many factors such as flow rates, temperature, pressure, mate-
rial and configuration can influence the operating performance
of the DIR-SOFC. Furthermore, the nonlinear coupling vari-
ables and parameters can increase difficulty in analyzing the
operating states of the DIR-SOFC. For a black-box model, we
need not consider all the factors, and can concentrate on the
important variables and parameters which we are interested in.
The current density—voltage characteristic is important for fuel
cells; and the thermodynamic performance of the stack is also
crucial for designing and controlling the DIR-SOFC.

The DIR-SOFC can be regarded as a system with three-input
(Fg“el, ngr and Vo) and two-output (Toye and Iy). Vout, Tout
and I, are the stack output voltage, the outlet temperature and
the mean current density, respectively. We assume that the DIR-
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SOFC can be modeled by equations of the following form.

Toutk) = fi(Voulk — 1), Vou(k —2), F(k — 1), F(k — 2),

Tou(k — 1), Tou(k — 2)), (50)
In(k) = fo(Voulk — 1), Voulk —2), F(k — 1), F(k — 2),
Im(k — 1), Im(k — 2)), (5D

where f] and f> are unknown nonlinear functions, and F repre-

sents (Fg“el, F{)’ir )T. We expect to estimate functions f; and f» so
that the behavior of model is close to that of the real DIR-SOFC
stack. In order to fit into the framework of the wavelet network
as formulated in Section 3, let

{% = (Voulk—=1), Voulk — 2), Fk — 1), F(k — 2), Tou(k — 1),
Towk —2),  y = Tou(k)} (52)
and

{% = (Vourlk — 1), Vourtk — 2), F(k — 1), F(k = 2), I(k — 1),

In(k —2)",  y=In(0)}. (53)
In our study, the mother wavelet has been chosen as
1,
Y(x) = —xexp BERE (54)

and 6 as 0.2. The wavelet network modeling of the DIR-SOFC
is implemented based on simulation data.

4.1. Preparing simulation data
The system under consideration is a 16 kW DIR-SOFC stack

that consists of 30 cells operating in cross-flow mode. The
dynamic physical model of the DIR-SOFC stack is developed

679

F fuel I

T fuel

in

F air T;lir

in in

Fig. 4. Schematic illustration of the physical model of one cell.

in MATLAB to generate simulation data. The schematic illus-
tration of the physical model of one cell is shown in Fig. 4.
The cell is divided into several elements which are mutually
connected by bidirectional arrows. The fuel and air are respec-
tively injected into the cell in orthogonal directions and pass
sequentially through one element to the next element. The inter-
action (temperature, gas flows, etc.) between adjacent elements
is taken into account and is indicated by bidirectional arrows in
Fig. 4.

Fig. 5 illustrates the implementation of the element in
MATLAB/Simulink. The element module is composed of the
reforming module, electrochemical module and temperature
module. We write S-functions in C language and generate
masked S-function blocks that can be invoked as sub-modules. In

(1 F_fuel_in »{ 3
F_fuel_in BT in F_reforming J— F_fuel_out
» T_out ';( 4 )

T_in . F_air_out
Reforming module
F_fuel_in
F_reforming
P F_fuel_out
P F_air_in
1 F_air_out T_out »(1)
| i T_in T_out
»{F_fuel_in > Veell
|
—P|f=mbming T_neighbour
(3) F_air_in -
F_air_in Veell F_fuel_out f— Temperature module
® e "D
Veell T out F_air_out |
= rwwwy
Electrochemical reaction module

T_neighbour1é) T_neighbour2 { T_neighbour3( 7 )T_neighbour4

Fig. 5. Implementation of the element in MATLAB/Simulink.
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Table 1
Operating conditions and parameters of the DIR-SOFC stack
Item Value Unit
Number of cell 30
Cell area 0.16 m?
Power 16 kW
Mean current density 100-8900 Am~2
Output voltage 8-28 v
Fuel flow rate 0.5-3 103 kgs™!
Air flow rate 0.7-3 10~ 2kgs~!
Inlet fuel temperature 980-1320 K
Inlet air temperature 980-1320 K
Inlet composition of fuel
CHy4 28% mol/mol
CO, 1% mol/mol
CcO 1% mol/mol
Hy 10% mol/mol
H,O 60% mol/mol
Inlet composition of air
0, 23.7% mol/mol
Ny 76.3% mol/mol
Operating pressure 3 bar
Anodic activation energy 1.2 10° Jmol™!
Cathodic activation energy 12x10° Jmol™!
yo 2.9 x 108 Am™2
y 7 x 108 Am~2
Limiting current density 9000 Am~?

Fig. 5, T_in, T-out and T _pejghbour are vectors whose components
are temperatures of the cell unit, fuel, air and separators. 7,
and T, denote the inlet and outlet temperature vectors of the
element, respectively. Four T_pejonbour TEpresent the temperature
information of the adjacent elements.

The variables and parameters of the dynamic physical model
are listed in Table 1. The dynamic physical model is excited
with the fuel flow rate ((0.5-3) x 1073 kg s~1), the air flow rate
((0.7-3) x 1072 kg s~ 1), inlet temperature (980-1320K) and
the output voltage (8—28 V) to generate data. 16,000 data are
obtained from the simulation and are split into two parts. One
part (8000 data) is used for the construction and identification
of the wavelet networks, and the other part (8000 data) is used
for the evaluation of the resulting wavelet networks.

4.2. Predicting with wavelet networks

Using the approaches described in Section 3, wavelet net-
works are thus constructed based on the first part of data.
The identification results of the numbers of multi-dimensional
wavelets used in the networks, Ny, are 32 for f; and 35 for f>
(corresponding to ecy =0.3), respectively.

Fig. 6 shows the comparison of VoI, characteristics gen-
erated by the resulting wavelet networks and the physical model.
We can see that the static Vo —I, characteristics predicted by
the wavelet networks show good consistency with the physical
model under various temperature.

For controlling the DIR-SOFC stack, the dynamic predictive
capability of the model is more important. Two cases are used as
examples to evaluate the dynamic performance of the obtained

Physical model 1000 K
— - Physical model 1090 K
— — Physical model 1180 K

26 —— Physical model 1270 K
24l + Wavelet network 1000 K
+ A Wavelet network 1090 K

o *  Wavelet network 1180 K
= & Wavelet network 1270 K
& 20t ,
8 »
O 18 N
2 i a
2 16t A
S N
O 14+ + \

12}

10} gt

8 L i i [N i
0 2000 4000 6000 8000 10000

Mean current density (Am_z}

Fig. 6. Comparison of Vo —Iny characteristics.

wavelet networks.

(1) Fuel flow rate increases from 8.21x107* to
9.43 x 10_4kgs_1, and air flow rate maintains
1.24 x 1072 kgs™1;

(2) air flow rate
1.12x 102 kgs~!,
8.21 x 10~*kgs~!.

decreases from 124x1072 to
and fuel flow rate maintains

In these two cases, the inlet temperature (1024 K), the stack
output voltage (21 V) and operating pressure (3 bar) are kept
constant.

The comparison of dynamic responses of the wavelet
networks and the physical model is shown in Figs. 7-10.
Figs. 7 and 8 present the responses of outlet temperature and
mean current density for Case 1, Figs. 9 and 10 for Case 2.

In Case 1, the magnitude of changes in outlet temperature
and mean current density are relatively large, and the curves
generated by the wavelet networks and the physical model are
too close to distinguish. For a closer look of the results, zooms

1280 . y . .
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g
2
[
2 1250 -
£
9 d
5 1240 44 .
g 4500 5000 5500 6000
o
1230 .
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1220 : ; T ;
0 0.5 1 15 2 2.5
t(s) x10*

Fig. 7. Dynamic response of outlet temperature for Case 1.
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Fig. 10. Dynamic response of mean current density for Case 2.

Table 2
Statistical results for two cases

Case Outlet temperature Mean current density
MSE cC MSE CcC

1 0.1212 0.9997 0.2106 0.9993

2 0.0054 0.9992 0.1189 0.9989

Table 3

Computational time for two cases

Case Computational time (s)
Outlet temperature Mean current density
Physical model Wavelet Physical model Wavelet
network network
1 3.39975053 x 10° 0.916 3.39975053 x 10° 0.928
2 3.23977547 x 10° 0.872 3.23977547 x 10° 0.907

of the curves are inset in corresponding figures (Figs. 7 and 8).
The mean squared errors (MSE) and the correlation coefficients
(CC) between the wavelet network output and the physical model
output in two cases are computed and presented in Table 2. As
can be seen from Figs. 7-10 and Table 2, the proposed method
is successful in identifying the DIR-SOFC dynamics.

5. Conclusions

Nonlinear identification of a DIR-SOFC stack using wavelet
networks is described in this paper. Combining the MRA
of wavelets and evolution of networks, the wavelet network
approach is classified as black-box modeling, and avoids using
complicated multiple partial differential equations of energy
balance and mass conservation. The simulation programs oper-
ate on a Pentium 4 2.80 GHz computer with 256 MB memory.
Table 3 shows the comparison of computational time (required
for the response curve to reach a steady-state) between the phys-
ical model and wavelet networks for different cases (increasing
the fuel flow rate and decreasing the air flow rate). As can be
seen from Table 3, the computational time for calculating the
response curve by using wavelet networks is less than 1 s, and is
much shorter than the computational time needed by the physical
model. Simulation results illustrate fast and robust adaptation of
the wavelet network model following changes in operating con-
ditions. The static and dynamic characteristics of the DIR-SOFC
stack can be predicted with relatively high accuracy. It is shown
that the presented wavelet network is a powerful and attractive
method for the identification of a DIR-SOFC stack. The obtained
wavelet network model can facilitate analysis of system stability
and be used for designing model-based controllers. In the future,
the model is planned to be used for developing predictive and
robust controllers for the DIR-SOFC stack.
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Appendix A. Derivation of iterative updating formulas

Assume that, at iteration k, the estimation of wj, corre-
sponding to ¥ (x(k)) is dy,, while the coefficients of other
multi-dimensional wavelets are w;(k — 1) (I # I5). We define

Ny
y(k) = Zwl(k — DY (x(k)) + Wy, Wi, (x(k)).
)

(A1)

A least squares cost function with forgetting factor is defined
as

k
elk) = (y(j) = F(GN*A, (A2)
j=1
where 0 <X <1 is the forgetting factor [23]. wy, (k) is estimated

by minimizing (k) (Eq. (A.2)). The partial derivative of the cost
function with respect to Wy, is

) o~ ().
o, —2;@(1) - y(J))WlSA
k
= =2 ((j) — YN, EGNAE
; (A.3)
k Nyw
=—2> | y()= _wi(j — D)~y Wi, (X))
j=1 I#ls
W, (X(j))Ak—i
Let
%) _ g (A4)
o,
Hence,
wy (k) =
S (Y-S wi= DG ) v GO
- Sk RGN '
(A.5)
Let
k .
di (k) = WA (A.6)
j=1
Rewriting Eqs. (A.5) and (A.6) as recursions:
Ny
e(k) = y(k) = Y wilk — D@ (x(k)), (A7)
=1
dy, (k) = Ady, (k — 1) + VL (x(K)), (A8)
_ L WGk
wy, (k) = wy (k — 1) + Tah (A.9)

Eqgs. (A.7)-(A.9) are used for updating wy, .
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